
5/2/2019

1

Towards Neuromorphic Complexity Analysis
Johan Kwisthout, Associate PI, Donders Institute

Brain-inspired computing

• In October 2015, the White House Office of Science and Technology
Policy released the following Grand Challenge for Future Computing:

• “Create a new type of computer that can proactively interpret and
learn from data, solve unfamiliar problems using what it has learned,
and operate with the energy efficiency of the human brain”

Neural-inspired systems
for non-von Neumann
computational architectures

Continuous data transfer
between memory and CPU

Heat generation bottleneck!

Neuromorphic architectures

What is a neuromorphic architecture?
• Principles most people agree on

• Neurons and Synapses as basic components
• Co-located memory and computation
• Potentially energy efficient (“orders of magnitude”)

• Different schools of thought
1) Analog hardware based (“memristors”)
2) Spike-based digital systems (“spiking neural networks”)

SpiNNakerBrainScaleS Loihi

Neuromorphic architectures

What are these neuromorphic architecture good for?

• Probably well suited for…
• Event-driven sensors / actuators (neuromorphic robotics)
• Energy-critical applications that allow for less precision

• Probably not the best architecture for…
• ‘Deep’ classification and pattern recognition

(outperformed by convolutional DNNs)
• Applications that value precision over energy usage

• Is “machine learning” the only possible application?

Remember the GPU…

5/2/2019

2

Programming neuromorphic architectures

• Some problems (e.g., matrix multiplication) can be
solved more efficiently on a GPU; for others (e.g.,
serial computations) a CPU is still better suited

• Programming a GPGPU requires different way of
thinking about data structures (e.g. data streams)

• Similarly, some problems may be solved more
(energy-efficiently) on neuromorphic architectures
than on more traditional Von Neumann architectures

• Similarly this requires different ways of thinking
about data and algorithms!

Towards neuromorphic complexity analysis

• What sort of problems are efficiently solvable on a
neuromorphic computer? Which are not? Are these
problems different / the same as the problems
efficiently solvable on a Von Neumann architecture?

• Given the nature of neuromorphic architectures,
energy seems to be a vital resource (not only time)

• Our current models of computation (viz., Turing
machines) capture only time and space as relevant
resources for computation – not energy!

New computational model is needed

• DoE 2016 workshop report, p. 29:
“…likely that an entirely new computational theory
paradigm will need to be defined in order to encompass the
computational abilities of neuromorphic systems”

Goal: To describe what sort of problems can and cannot be
solved energy-efficiently on neuromorphic hardware

Needed: New branch of complexity theory with:

1) Formal notion of “computation” in neuromorphic architectures

2) Complexity classes based on resource constraints

3) Hardness criteria and a means to translate problems into
each other while keeping resources invariant

4) Algorithms to show that a problem is in a specific class

Proposed computational framework

Spiking neural network model

• Key neuromorphic aspects are there:

• Co-located memory & computation
• Spiking behavior  energy efficiency
• Stochastic sampling or deterministic spikes

• Underlying principle of Loihi / SpiNNaker machines

Neuronal model: basically simple LIF model

• Specific input and readout neurons
to inject / extract information

• Stochasticity or determinism

• Discrete time steps

Example problem: adding two numbers mod K

• Special neuron Const fires at every
time step >= 0 (bias = threshold)

• Clock neuron fires every K timesteps

• A and B fire at time d mod K (d = 2,3)

• Spiking time of the neuron relative to
clock encodes its value!

5/2/2019

3

Example problem: adding two numbers mod K

• Circuit ensuring that once a neuron
fires, it fires until reset by the clock

• Adder circuit spikes on carry-out,
neuron potential at clock intervals
encodes A+B mod K

Beyond Turing

• Turing Machine ML

• Input I encoded (in binary) on the tape
• State machine ML implements algorithm
• Formally: recognizes languages L  {0,1}*
• Canonical question: Does ML accept I  L

using resources (time/space) at most R?

• Family of Boolean Circuits CL,|I|

• Input I encoded as special input gates
• Circuit (different circuit per input size |I|)

implements algorithm
• Formally: recognizes languages L  {0,1}*
• Canonical question: Does, for every I, the

corresponding circuit CL,|I| accept I  L
using resources (time/space) at most R?

Beyond Turing

• In SNNs, input I and algorithm A are co-located!
• We take the circuit idea to the extreme…

• Collection of SNNs SL,I

• One network for every input I
(or set of inputs {I})

• Input and algorithm operating on it are
encoded in the network structure

• Formally: recognizes languages L  {0,1}*
• Accept / reject by special neurons firing
• Canonical question: Is there a resource-

bounded Turing machine ML that, given I,
generates SL,I which decides I using
resources at most RS?

Beyond Turing: preprocessing + computation

Pre-processing step
taking resources RA

Computing step
taking resources RS

Computation

• Hierarchy of complexity classes defined by choices
for RA(time, space) and RS(time, space, energy)

• E.g., RA(poly time, log space), RA(poly time, space, energy)

Computing with neuromorphic oracle

Computation on ML

taking resources RA

Computing on S
taking resources RS

Computation

• More powerful alternative: use S as co-processor
• Formally: S is an oracle for Turing machine ML

• We have defined canonical complete problems and
resource-preserving reductions between problems

• These problems is complete for resource bounded
SNNs, resp. neuromorphic oracle machines, and
can be used as starting point for reductions to actual
(real-world) problems

Some first theoretical results

5/2/2019

4

• Neuromorphic oracles cannot do magic…

• This implies that there is no super-polynomial
speedup in using a neuromorphic co-processor
(which is similar as for using GPUs)

• But then again, speed is not the major consideration
when we are considering neuromorphic hardware

• But energy is!

Some first theoretical results

Max network flow problem

Some first theoretical results

MSc project
Abdullahi Ali

It can be solved in Logspace when allowed
to use a neuromorphic co-processor!

This problem is P-
complete, meaning that
it cannot be efficiently
parallellized (use only
logarithmic space) on
traditional machines!

• Max Network Flow is P-complete, implying it is an
inherently serial problem resisting effective
parallelization – takes more than log(n) space

• We can not solve it efficiently on a ‘stand-alone’
neuromorphic computer (working on formal proof)

• Idea: use the power of the neuromorphic oracle
• Offload those computations that can be done in parallel
• Specifically: finding the shortest augmenting path between

s and t using “first-past-the-post” spike timing
• We can show that the CPU then needs only log(n) space

and the oracle (for dense networks) log(n) spikes

MAX Network Flow Neuromorphic complexity in theory and practice

• Theoretical research financially supported by Intel’s
Neuromorphic Research Community

• Goal of INRC is to build a research community
around their new Loihi chip

• We try to implement our algorithm not only in
(abstract) simulator but in actual hardware

• Show the relation (or mismatch...) between formal
theory and practice!

Neuromorphic complexity in theory and practice

• Theoretical model: oracle state / oracle tape
for communication between TM and SNN

• Machine model allows for definition of readout
neurons whose state can be written to the tape

• In reality, this doesn’t work this way: you just
“upload” the network and “download” the entire
SNN state  computationally costly!

• We have not yet taken constrained communication
resources into consideration

Conclusion

• New theoretical framework
1) Formal notion of “computation” in neuromorphic architectures
2) Complexity classes based on resource constraints
3) Hardness criteria and a means to translate problems into each

other while keeping resources invariant
4) Algorithms to show that a problem is in a specific class

• Iteration between formal model and actual
architecture to ensure vital aspects are captured

• My research group is currently working on GUI to
develop and ‘drag-and-drop’ design patterns
(circuits) to construct algorithms

